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Abstract

Separate techniques of interpolation, reflection,

and parameter estimation are combined to develop a new

goodness of fit test for the uniform distribution. The

Kolmogorov-Smirnov, Anderson-Darling, and Cramer-Von Mises

statistics are used in the generation of critical value

dtables of sample sizes from 3 to 50. The methods for esti-

mating parameters are the Maximum Likelihood and the Best

Linear Unbiased Estimators. Separate tables for each are

presented. These tables are built with and without employ-

ing the reflection technique. The reflection technique is

one in which the data points are reflected about the sample

mean to double the size of the sample set.

With these tables of critical values, a power study

is done to test the power of the three statistics with the

reflection procedure versus the same statistics without the

reflection procedure The powers are generally higher for

the statistics modified with the reflection procedure; how-

ever, they are found to be smaller for data distributions

that are non-symmetrical or Cauchy. The power for the

Anderson-Darling statistic using the Maximum Likelihood

Estimators is found to be of little value while the powers

of all statistics were found to be improved by using the

Best Linear Unbiased Estimators instead of the Maximum

.- ' . Likelihood Estimators.
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A NEW GOODNESS OF FIT TEST FOR THE

UNIFORM DISTRIBUTION WITH

UNSPEC IFIED PARAMETERS

I. Introduction

The concept of goodness of fit has been used for

some time in statistical analysis. This concept is based

on the assumption that one can take a set of data and per-

form tests on that data to see if it fits (or corresponds

to) a known probability distribution. This involves using

statistical tests with the following hypotheses:

H0: f(x) = known probability distribution

HA: f(x) # known probability distribution
A

where

H0 is the null hypothesis

H is the alternate hypothesis
A

f(x) is the assumed distribution that the analyst

thinks the data fit

The analyst usually wants to be able to accept the null

hypothesis (H0 ) that the distribution of the data is known.

This type of testing involves a yes/no decision.

Either the data fit the hypothesized distribution well

enough to be able to assign the associated properties of



the distribution to the data, or the data don't fit (Ref

15:2). In this yes or no decision, which is based on cer-

tain fixed criteria, there is no way to tell ow good the

fit really is without referring to other studies. The only

conclusion that is drawn is that the null hypothesis is

either accepted or rejected.

Power Concept in Goodness

of Fit Tests

A few relatively recent studies (Refs 9; 15; 19)

have applied certain individual techniques that will be

combined in this thesis to support the concept of power as

a measure of goodness of fit. These techniques will be

described in later sections.

6 The power of a test is the probability of reject-

ing the null hypothesis (H0) when the alternate hypothesis

(HA) is true (Ref 14:403-404). Thus, the power becomes a

statement of confidence in the ability to reject the null

hypothesis when the alternate hypothesis is in fact true.

To give an example, suppose a data sample is drawn. Now

suppose that the involved null hypothesis, H0 , is that the

data come from a uniform distribution and the alternate

hypothesis, HA, is that the data are not uniform. A good-

ness of fit test is run and the calculated statistic is

found to be .360 at a = .01. From a table of critical

values it is found that .462 is the critical value for that

. statistic. Since the calculated statistic is less than the

critical value, the null hypothesis would fail to be

2



rejected. Now suppose that a power study for that sta-

tistic is looked at and it is found that the power versus

a normal distribution is .98. The conclusion that the data

are not normal, but uniform could be stated with high con-

fidence. If another power study was considered where the

power versus the Cauchy distribution was found to be .23,

not much confidence could be placed in the conclusion that

the data are not Cauchy, but uniform (Ref 15:3-4).

Problems with Goodness of Fit
Statistics and Associated
Power Studies

When using many of the goodness of fit statistics,

one should be aware of some of the problems that are

associated with them. One of these problems is that with

small sample sizes, and at low significance levels (alpha

levels), these statistics are not very powerful. That is,

they have relatively low power values which means there is

a good possibility that the null hypothesis is not being

rejected when the alternate hypothesis is true. This

problem is evident for all test statistics concerned within

this thesis.

A second problem is that the method of estimating

parameters where those parameters are unknown has a great

effect on both critical values in the rejection tables

and on the power values. This thesis looks at two methods

for estimating the unknown parameters. The first method is

the Maximum Likelihood Estimator method and the second is

3



the Best Linear Unbiased Estimator method. The results of

these two methods are very different, and are discussed in

later chapters.

A third problem that is encountered in goodness of

fit tests is that the power of the tests vary with the

distributions involved. Because of this the power study

becomes important and useful to the analyst (Ref 15:3).

Statistics and Techniques

Used in Thesis

Besides the two techniques for estimating param-

eters already mentioned, there are two other important

techniques and three statistics involved in this thesis

that are presented in this section.

Three Test Statistics. There are several test

statistics that are used in goodness of fit hypothesis

testing. Of these, the three that are considered in this

research are the Kolmogorov-Smirnov (K-S), the Anderson-

Darling (A-D), and the Cramer-Von Mises (CVM) test sta-

tistics. These are standard tests and are used to test

whether or not a set of data comes from a completely speci-

fied distribution. However, when the parameters are

unknown, they must be estimated and the test statistics

modified accordingly. This has been done in several cases

of distributions with unknown parameters. For example,

H. W. Lilliefors did it for the normal distribution and

the K-S test (Ref 12), R. Cortes did it for the Gamma and

4
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Weibull distributions and the K-S test (Ref 4), and

J. Green and Y. Hegazy did it for all three tests (K-S,

A-D, and CVM) and for several distributions among which

was the uniform distribution (Ref 7). Since this thesis

is concerned with the uniform distribution, the work by

Green and Hegazy will be referenced and some of their

methodology will be followed.

Two Important Techniques. This thesis uses two

important techniques that have a direct bearing on the

thesis objectives. The first is a reflection technique

that was developed by E. F. Schuster in 1973 (Ref 19) and

subsequently used in a study of the normal distribution by

Thomas J. Ream in 1981 (Ref 15). The second technique is

one for representing ordered statistics on a continuous

spectrum which allows interpolation and extrapolation of

critical values. This technique is known as the Bootstrap

technique and was developed by B. Efron (Ref 6) and has

been used in studies by J. Johnston (Ref 9) and also by

Thomas Ream (Ref 15). These techniques will be used in a

similar manner in this research.

Reflection Technique. The concept of reflection is

a main part of this thesis. It takes the ordered data in

the sample set and reflects it about the sample mean so

that a symmetric sample that is twice the size of the

original sample set is produced. It is hoped that this

... increase in size will cause an increase in the power of

the calculated statistic.

5



* *. . Bootstrap Technique. The boostrap technique is

used in this thesis in the same manner as it was used by

Johnston (Ref 9) and Ream (Ref 15). It pertains to the

generation of critical value tables (also known as rejec-

tion tables). The critical value tables are usually

developed by randomly calculating very large numbers of

the statistic involved and then ordering those values of

the statistic. The critical value for a given significance

level -ould simply be the statistic that corresponds to

the percentage point for that significance level. For

example, suppose 5000 statistics are calculated and ordered

and the significance level is set at .10 (a = .10). The

critical value would simply be the statistic that corres-

ponds to the 90 percent level or, in other words, the

4500th ordered statistic. The bootstrap technique takes

these ordered, discrete statistics and plots them on a

continuous spectrum between zero and one. When this is

done the spaces between each of the plotted statistics

represent piece-wise linear functions and this makes it

possible to interpolate for the desired percentage level

and thus a more accurate value can be obtained.

Primary Thesis Objectives

There are three primary objectives in this research

effort concerning the uniform distribution. The first is

to generate tables of critical values for the Kolmogorov-

Smirnov, Anderson-Darling, and Cramer-Von Mises test

6



statistics using the Schuster concept of reflection of

data points about the sample mean. Also, a set of these

tables will be developed for these same test statistics

when the data points are not reflected. It is noted here

that Green and Hegazy developed tables for critical values

for the uniform distribution with unspecified parameters

using these three test statistics but their's was based

on a different number of statistic calculations. They

also did not use the interpolation technique (bootstrap)

nor were their data sample sizes extensive. Because of

these differences in methodology, the new tables were

needed and there will be some differences observed.

The second objective is to perform a power study

*using the above-mentioned tables and to determine if there

is an increase in power of the goodness of fit test when

the reflection technique is used.

The third objective is to conduct the study using

both the maximum likelihood estimators and the best linear

unbiased estimators to compare the powers for each to

determine which is the best to use.

Format of Thesis

This thesis is composed of five chapters. This

introduction is the first chapter-and is meant to tell

what the research is about. Chapter II gives a background

of the uniform distribution and more details about the

techniques that are used in the study. Chapter III is the

7



procedure chapter. The procedures followed in the study

as well as the methodology are outlined here. Chapter IV

provides the results of the power study and Chapter V con-

tains the conclusions and recommendations. The appendices

contain the power value tables and examples of computer

programs used in the calculation of the critical value

tables and in the generation of the power tables.

8
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II. Background

The purpose of this chapter is to explain in

further detail the techniques and test statistics that are

used in this thesis. The format of this chapter is as

follows:

1. The uniform distribution along with the two

methods for estimating parameters is briefly discussed.

2. The reflection technique is then explained in

further detail with an accompanying example.

3. The bootstrap technique is the next topic to

be covered. A statement of the plotting position is

included here.

4. The three test statistics (K-S, A-D, and CVM)

are outlined and examples of each are presented.

Uniform Distribution

A random variable that covers an interval (a,b)

is said to be uniform if it has a probability density

function (pdf) given by:

1 if a < x < bb - a
f(x))

0 otherwise

This pdf is used to calculate the cumulative distribution

. function (CDF) which is given as follows:

9
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0 if x < a

F x x -a if a < x < b (2)
F () = b -a

if x > b

These equations are used both in the calculations of the

critical value tables and in the power study. The problem

here is that when a and b are unknown they must be esti-

mated. As mentioned in Chapter I, this research was

accomplished using two methods of estimation, the maximum

likelihood estimators (MLE) and the best linear unbiased

estimators (BLUE). The MLE for the uniform distribution are

found in the following way:

Let xI , x2, x3 , ... , x be a random sample of

0observations from a uniform distribution with the pdf
given in Eq (1) above. Then the likelihood function, L.

is the product of the individual pdf values. That is

L =fxfx 2 ) ...f(x H ) -L_) (3)
X1  2 . n b-a b- -

n n

The object is to find a and b that maximizes L above. In

the case of the uniform distribution, it is no-ed that L

is a monotonically decreasing function of a and b. Since

L increases as (b-a) decreases and since (b-a) must be

equal to or greater than the maximum observation in the

sample set, the estimated values of a and b that maximize

10
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- 'L are the smallest and largest observation in the sample

(Ref 14:365). Therefore, after ordering the sample set of

observations, the values of a and b are simply the values

of x(l) and x(n) respectively. These MLE for a and b were

used in the first phase of the computations.

The BLUE method was the second method for esti-

mating a and b. This method effectively takes the average

distance between the ordered sample set of observations

and sets the lower-bound, A, that distance below x(l) and

- sets the upper bound, S, that same distance above x

This is done by the following equations:

a= x(1 ) - (X(n) -X(l} / (n- 1) (5)

O = X~n (x~n X(l) /(n I)(6)

where

x (1) is the first ordered observation

X(n) is the last or nth ordered observation and

n is the number of observations in the set

As will be seen, this BLUE method for estimating the uni-

form parameters (Ref 17:387) was found to be of greater

utility and gave more meaningful information in the power

study than did the MLE.

Reflection Technique

The first step in the reflection technique, as

presented in this research, is to order the sample set

from the smallest to largest. This is really not necessary

11



if doubling the sample size is the only objective. It is

done here for clarity and easier following. The mean is

then calculated using the standard uniform equation for

the mean

= a+b (7)
2

The next step is to take each random deviate (observation)

in the set and find the point on the opposite side of -the

mean that is equal distant from the mean as that point.

This is done in the following manner:

Let i = 1, 2, 3,..., n where n is the number of

observations in the set. Let P equal the calcu-

IV lated mean (Eq 7) and let (x(1),x(2),x(3),...,X(n))

be the ordered set of random observations, For

each i we are looking for Xn+i, the new reflected

point.

Xn+ i = 2P - x i  (8)

It is observed that the original mean (before reflection)

is the same mean of the newly formed symmetrical reflected

set and each point is the same distance from the mean and

its reflected point. Table 1 gives a numerical example

of this technique.

12



Table 1

Reflection of Data Points About the Mean
For a Sample Set n = 5

Reflected Data Points
Data Points Mean (2p - x.) Mean

.174 .864

.411 .627

.502 .519 .536 .519

.678 .360

.864 .174

Complete Ordered Set
Now of Size 10 Mean

.174 .536

.174 .627

.360 .678 .519

.411 .864

.502 .864

* Bootstrap Technique

The main purpose for using the bootstrap technique

is to obtain a method for interpolating the critical values

at different significance levels. This technique is based

on a plotting procedure that plots the calculated critical

values on the horizontal axis and calculates a value

between zero and one on the vertical axis that corres-

ponds to each of the critical values. There are three

plotting position procedures that can be used for calcu-

lating the vertical values in the bootstrap technique.

These are the median rank, the modified step rank, and the

average of the mode and mean ranks. A detailed discussion

of these three plotting procedures is not presented here

since a complete description is given both by Bush (Ref 3)

13
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and by Ream (Ref 15) in their research. It is sufficient

to note here that all three of these procedures possess a

desired (and required) symmetrical property that enable

them to assign positions between zero and one to each of

the corresponding critical values. It is also noted that

there is very little difference between the values

generated by these three procedures when the sample size

gets very large. That is, when the number of critical

values that are used gets above 50, the differences between

the plotting values for the three procedures are only in

the fourth decimal place. For this reason the modified

step rank procedure is used in this thesis because of its

simplicity and ease of programming and computation.

Modified Step Rank. The formula for the step

rank is

step rank = (9)

As this formula is written, it does not have the necessary

symmetry property that is mentioned above. To obtain this

symmetry property, Eq 9 is modified as shown in the follow-

ing equation.

modified step rank = i - 0.5 (10)n

This is the plotting procedure used in this thesis for the

generation of all the critical value tables. As it will

14



be shown in the next section, it is an integral part of

the bootstrap technique.

Example of Bootstrap Technique Using Modified

Step Rank. To give an example of how this modified step

rank procedure is applied in this study, consider the fol-

lowing:

1. Ten random deviates are obtained from a uni-

form distribution.

2. With these ten random deviates, a K-S statis-

tic is calculated.

3. These first two steps are repeated ten times

to yield ten K-S statistics (different seeds are used for

each time).

4. The ten K-S statistics (denoted by X., for

i = 1, 2, ..., 10) are then ordered from smallest to

largest.

5. The modified step rank (Yi) is calculated for

each i using Eq 10.

A numerical example of these steps is shown in Table 2.

The values in Table 2 are the values used in the following

example of the bootstrap technique.

To obtain a fully continuous function between

zero and one, the extrapolation process is needed to

find the end values of this function. These end points

are represented by X(0 ) and X(11 ). This process uses the

standard linear slope-intercept formula

15



Table 2

K-S Ordered Statistics and Values of the Modified
Step Rank for Sample Size of 10

Modified Ordered
i Step Rank (Y (i) Statistic (X )

1 .05 .1663
2 .15 .1696
3 .25 .1839
4 .35 .1859
5 .45 .2004
6 .55 .2195
7 .65 .2252
8 .75 .2333
9 .85 .2868

10 .95 .3389

y mx + b (11

to find the values of X0 and Xll. The values for X0 and

X 11are extrapolated critical values that correspond to 0

and 1 on the vertical axis. Using Eq 11 and the above

table we find the slope

Y2 - 1 .15 - .05
2 -l _ =1 0 30.3030 (12)-(2 -) x ( ) .1696 - .1663

and the intercept

b=Y 1 - m(X(l)) = .05 - (30.3030) (.1663)

= -4.9894 (13)

and finally X 0

* " X(Q) - 0.0- b 0.0 - (-4.9894) 16465 (14)
(0) m = 30.3030

16



It is noted that in some cases, the critical value at

X(0 ) will turi. out to be less than zero. In these cases,

X is simply set to zero.

Extrapolation for X is accomplished in the

same way as X( ) . We first find the slope

.Y 10 Y 95 - .85(10)
.x 109= 95=8 = 1.9194 (15)
-,, (10) - (9) .338 9- .2868

and then the intercept

b = Y - m(X (9)= .85 - (1.9194)(.2868)

= .2995 (16)

and X

S1.0 - b 1.0 - .2995 = .36495 (17)
(1) M 1.9194

This now yields a completely continuous piece-wise linear

function between zero and one. Figure 1 shows how all of

these values are correlated in a graph.

Let us now suppose that we want to look at a

significance level of .10 (c = .10). It is mentioned

earlier that Green and Hegazy (Ref 8) as well as others,

would simply choose the ninth largest ordered statistic

(.2868 from Table 2) as the critical value. However, by

using the bootstrap method, a more accurate critical value

is .3129. This is calculated as follows:

17



1. 0 -

.85-

.75-

.65--

.55 I

.45- -I I

.35-

.25- [

.15--

.05

.05 .10 .15 .20 .3 .35X,.40 .45 .50 X
: X() 11I )

Critical Value at
a =.10 is .3129

Figure 1. Example of Bootstrap Technique
Using Modified Step Rank
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First,

m = 1.9194 from Eq 15.

Next,

b = .2995 from Eq 16.

And finally,

critical value .90 - (.2995) 31( = .0) 1.9194 .29 (18)

This new critical value is more accurate (Ref 9) and it

is probable that it will have a noticeable effect on the

power study. It is also easily seen that this critical

value will vary with statistics calculated from random

samples. Therefore, the rumber of samples needed to

obtain consistent results must be determined.

Three Test Statistics

As mentioned in Chapter I, the three test sta-

- tistics that are used in this thesis are the Kolmogorov-

Smirnov (K-S), the Anderson-Darling (A-D), and the Cramer-

Von Mises test statistics. This section will briefly

review and explain each of these statistics. Also, a short

. example is presented to illustrate each statistic.

Although the research in this thesis was conducted for

both the MLE and the BLUE, only the BLUE method is shown

in the examples. It is noted that the examples for each

* . of the statistics employ the same ten random numbers and

thus the same values for the CDF.

19
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Kolmogorov-Smirnov (K-S) Statistic. There are

several tests that have been developed that relate to K-S

criteria. Some of these are presented by Green and Hegazy

(Ref 7:204) but the one used in this research is noted

as follows:

D =sup jF(x) S WnX) (19)

This statistic is defined by both Lilliefors (Ref 11) and

Massey (Ref 13). "D" is a common notation for the K-S

statistic, F(x) is the uniform CDF value of the given data

point, and Sn (x) is the sample cumulative step function.

There are two values of S (x) for each data point and theyn

are calculated by i/n and (i-l)/n where i is the rank of

the ith ordered statistic and n is the number of data

points in the sample. The value of F(x) is found by using

the BLUE and the value of each data point as shown in the

following equation.

F(x) = (R i -a) / (b-a) (20)

where

R. is the value of the ith data point
a

a is the lower BLUE bound which is found by Eq 5

bis the upper BLUE bound which is found by Eq 6

Table 3 shows how the K-S statistic is calculated for a

given data sample set of R. where i = 1, 2, 3, ... , 10.
2
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Table 3

K-S Statistic Calculation

S (x) R. F(x) F(x)-S x)
n 1 n

1 0 .1 .0189 .091 .091 .009
2 .1 .2 .1666 .238 .138 .038
3 .2 .3 .2717 .342 .142 .042
4 .3 .4 .3170 .387 .087 .013
5 .4 .5 .5478 .616 .216* .116
6 .5 .6 .5883 .657 .157 .057
7 .6 .7 .6416 .710 .110 .010
8 .7 .8 .6984 .766 .066 .034
9 .8 .9 .8028 .870 .070 .030

10 .9 1.0 .8424 .909 .009 .091

a = -.0727 b= .9339 D = sup IF(x)- (x) = .216

Anderson-Darling (A-D) Statistic. In this sta-

tistic, the first step is to order the sample set of

observed data. This can be annotated by x1 < x2 <, ... < xn
2

where n is the number of observations. Now let A be the

value of the A-D statistic (this is a common notation).

The equation for the A-D statistic (Ref 2:765) is

21 n
A = -n - E. (2j-l) [in F(xj)+ln(l-F(xn ))] (21)

j=1 n-j+1

where

F(x.) is the CDF value of the jth ordered data

point

F(Xj is the CDF value of the (n-j+l)th data

point. Table 4 is an example of the A-D statistic calcula-

tion with M = in F(x.) and N = in (l-F(Xnj+l)).

21
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Table 4

Calculation of A-D Statistic

j x. F(x.) F(x nj+ I ) M N (2j-l)(M+N)

1 .0189 .091 .909 -2.397 -2.397 - 4.794
2 .1666 .238 .870 -1.436 -2.038 -10.422
3 .2717 .342 .766 -1.073 -1.452 -12.625
4 .3170 .387 .710 - .949 -1.237 -15.302
5 .5478 .616 .657 - .485 -1.070 -13.995
6 .5883 .657 .616 - .420 - .957 -15.147
7 .6416 .710 .387 - .343 - .489 -10.816
8 .6984 .766 .342 - .267 - .419 -10.290
9 .8028 .870 .238 - .140 - .272 - 7.004

10 .8424 .909 .091 - .095 - .095 - 3.610

= -104.005

A2 =- 10- (-104.005) =.40050400

Cramer-Von Mises (CVM) Statistic. This statistic

0 is also described by Anderson and Darling (Ref 2:766).

Again, let n equal the sample size and let the CDF value

of the jth be annotated by u . Also, the observationsJ

must be ordered as before. The CVM statistic is given by:

2n 2

W2 =i2n + 7 (uj (2j-1)
j=l - 2n (22)

Table 5 contains an example of the calculations for this

statistic.
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" " Table 5

Calculations for the CVM Statistic

.x."U. 2j-1 (2j-1) 2,.: jx. U. (u.
j 2n 2n

1 .0189 .091 .05 .0017
2 .1666 .238 .15 .0077
3 .2717 .342 .25 .0085
4 .3170 .387 .35 .0014
5 .5478 .616 .45 .0280
6 .5883 .657 .55 .0115
7 .6416 .710 .65 .0036
8 .6984 .766 .75 .0003
9 .8028 .870 .85 .0004

10 .8424 .909 .95 .0017

= .0648

2 12(10) + (.0648) = .07313
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III. Procedures

This chapter explains, step by step, the pro-

cedures followed in the research for this thesis. The

calculations used for the generation of the critical value

tables and in the power study involved extensive use of

several computer programs, all of which were written in

FORTRAN 77. These programs were deliberately kept rela-

tively short and simple because of the large sample sizes

and the large amounts of time it took to generate data by

Monte Carlo simulation. The Control Data Systems CDC 6600

computer at Wright-Patterson AFB, Ohio was used to run

these programs.

Standard Critical

Value Calculations

A whole new set of critical value tables were cal-

culated for the A-D, K-S, and CVM test statistics. This

had to be done because previously published tables (Ref

7:207) did not employ the same techniques of estimating

parameters nor did they use the bootstrap interpolation

technique as discussed in Chapter II. The programs for

the calculation of these tables were all structured in a

similar manner. The basic steps are outlined as follows:

1. A large number of statistics are calculated

for a given test and stored in a vector array.
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2. This array is then ordered from smallest to

largest.

3. A plotting position procedure is executed that

assigns a plotting position to each of the statistics.

4. The bootstrap interpolation technique is then

applied to obtain the desired critical value at the desired

significance level.

Using these steps, tables of critical values with sample

sizes running from 3 to 50 for the K-S, A-D, and CVM tests

were obtained. Figure 2 is a flow chart that shows how

these steps are implemented in computer programs to obtain

the critical values.

When calculating the critical values for the

separate tests, a separate program was written for each

test. Since the programs were kept simple, it was neces-

sary to manually build the tables. This was done by modi-

fying the bootstrap interpolation section of the program

for each significant level. There are five significance

levels considered, so each program was modified and run

five times.

Determination of Number of Samples. As noted

earlier, the critical values vary with the statistics cal-

culated from random samples. In order to get consistent

results, large numbers of statistics for each value of n

need to be calculated. The question is, how many are

. necessary? From the literature, a common number used is
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* ,5000. However, Green and Hegazy (Ref 7) used 10,000 as

their sample size. Although this many would probably give

more accurate critical values, it was found to be too

burdensome for this system with its constraints. Because

of the large amounts of time involved in running the pro-

grams and because of the constraints on computer avail-

ability, the testing of how many statistics it was neces-

sary to calculate was kept to 5000 and below. In fact, the

test for determining the best number was run using the K-S

test statistic at sample sizes of 50, 100, 200, 500, 1000,

and 5000. Different seeds were used for all trials.

Plotting Position Procedure. Since each of the

statistics is matched with a plotting position, it is a

*simple matter to program the plotting position formula,

given by Eq 10, directly after the procedure for statis-

tics calculation.

Reflected Critical

Value Calculations

After the standard tables for the three statistics

were built, it was necessary to build similar tables for

the same statistics using the reflection routine as

described in Chapter II. This was accomplished by modi-

fying the sections of the previous programs that generates

the random numbers. A subroutine was added that did the

reflecting of the data points about the mean. With this

slight modification and the addition of the reflection

subroutine, the programs were run again for the various
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test statistics at the various significance levels. The

critical values obtained from these runs were then put

into tables. Figure 3 is a flow chart of the reflection

subroutine that is used in the programs.

Power Study

With tables of critical values for standard uni-

form data and for uniform data that are reflected about the

sample mean, a comprehensive power study is now able to be

accomplished. What is being done in the power study is

that the powers of the standard (non-reflected) uniform

critical values are being compared to those of the reflected

critical values. It is hoped that the reflection pro-

cedure will give better or higher powers than the stan-

dard technique.

Recall that the null hypothesis in the test is

that the sample data fit a known distribution (the uniform

distribution in this case). The alternate hypothesis is

that the sample data do not fit this distribution. Recall

also that the power is the probability that the null hypo-

thesis is rejected when the alternate hypothesis is true.

These facts form the basis for the power study. To illus-

trate how the power study is accomplished, consider the

following example for the K-S test statistic:

1. A random data sample is drawn from a distribu-

tion other than the uniform distribution.
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2. The K-S test is run for this sample set to

obtain the test statistic at a given significance level.

3. This statistic value is then compared to the

appropriate table at the appropriate significance level.

4. If the statistic value is greater than or equal

to the table value, the null hypothesis is rejected.

5. Steps 1-4 are accomplished 5000 times, each

time using a different seed.

6. The number of times the null hypothesis is

rejected is added up and divided by 5000. This gives the

power value for that particular run.

Figure 4 is a flow chart that shows how these steps were

implemented in computer programs for the power study. The

above steps are accomplished for data sample sets of sizes

10, 20, 30, 40, and 50. This provided good comparisons

for both large and small sample sizes. There are six sta-

tistics calculated for each of these sample sizes. These

statistics are the K-S and the K-S reflected, the A-D and

the A-D reflected, the CVM and the CVM reflected. A

separate program is written for each of these six test

statistics in the power study. The combining of programs

and procedures was avoided in order to keep the calculations

simple and to allow for manual construction of the power

tables. The individual programs for the six statistics

calculates the power of the given statistic at five differ-

.... ent levels of significance (a = .01, .05, .10, .15, .20)
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and at a given value of n, the sample size. Since there

are five sample sizes considered, each program is modified

and run five times.
Distributions Used in Power Study. There are four

distributions used in this power study. The study tests

the uniform distribution versus the normal, Cauchy, tri-

angular, and the double exponential distributions. The

4reason these distributions are presented is because of

their symmetric properties. In his research concerning

the normal distribution, Ream (Ref 15) found that a power

study involving non-symmetric distributions was of little

use. In fact, the powers for non-symmetric distributions

decreased when the reflection technique was used. Good

results could not be obtained with non-symmetric dis-

tributions. In an effort to verify this for the uniform

distribution, a power study was run for the exponential and

the lognormal distributions. As expected, the results were

that the reflection technique did not help the power.

Again, the power was found to decrease when the reflection

technique was applied to these non-symmetrical distribu-

tions. Because of this, they are not included in this

thesis.

The IMSL library contains several subroutines that

were used in this thesis, particularly in the power study.

The subroutines used to generate random numbers for the

various distributions all came from the IMSL library.

Also, a subroutine, that was particularly useful for

32
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ordering the various arrays from smallest to largest, was

obtained from the IMSL library.

The only distribution considered that did not come

from the IMSL library was the double exponential distribu-

tion. To generate random numbers for this distribution,

continuous random numbers were first generated using an

IMSL subroutine for generating uniform random numbers.

The CDF for the double exponential is given below where

the x. 's are the uniform random numbers.1

yi
e for yi < 0

F(yi) =1 -Yi (23)
I - 2 e for yi > 0

Now if x < 0.5, then yi = ln (2xi ) and if (24)

x. > 0.5, then yi = - ln (2-2xi ) (25)

The Yi is then a pseudo-random sample from the double

exponential distribution where i = 1, 2, 3, ... , n (Ref

12:265).

MLE vs BLUE

The procedures as mentioned in this chapter are

first carried out using the MLE. All the tables of criti-

cal values are generated and the power studies for the

above mentioned symmetric distributions are accomplished

first with the MLE method for estimating the parameters,

a and b. These same procedures are then reaccomplished

using the BLUE method for estimating the parameters,
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a and b. This is done to determine what effect the

changing of the method for estimating the parameters has

on the power values.

Format of the Appendices

All of the tables that were generated for this

research are listed in the appendices. The format of the

appendices is as follows:

1. Appendices A-C contain all of the critical

value tables (standard and reflected for both MLE's and

BLUE's) for the K-S, A-D, and CVM statistics respectively.

2. Appendices D-F contain the power tables

(uniform vs the above four symmetric distributions) for the

K-S, A-D, and CVM statistics respectively.

34

.



' . .

IV. Discussion of Results

The main result of this study is the obtaining of

the critical value tables and the power tables that are

listed in the appendices. There are, however, several

points that need to be explained. The purpose of this

chapter is to not only list the findings of the research,

but also to explain why the results came out as they did.

An explanation of the use of the tables is also included.

Tables of Critical Values

The tables of critical values (rejection tables)

listed in the appendices, are calculated using 5000 samples,

an interpolating procedure (bootstrap technique), two dif-

ferent methods for estimating the parameters of the data

set, and a reflection technique for doubling the size of

the sample. It is necessary to generate these tables

instead of using those that have already been generated by

other authors (i.e., Green and Hegazy) because of these

modifications that are used. It is because of these dif-

ferent procedures that there are differences in the tables.

The fact that there are differences in the table values

from different sources is not a critical issue. The

important issue is that one must be consistent in the use

of the tables. When running a test, the table that is

used must be one that is generated in the same manner as
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the test. For example, if the tables that Green and

Hegazy built are to be used, the test for goodness of fit

must be based on the same criteria as the tables.

One interesting observation is that the critical

values for the reflected K-S test are generally less than

those for the standard, non-reflected K-S test. However,

the critical values for the reflected CVM and A-D tests

are generally larger than those for the standard CVM and

A-D tests. As the sample sizes increase there are more

exceptions that are observed.

The tables are set up for sample sizes running

from 3 to 50 and for significance levels of 1, 5, 10,

15, and 20 percent (a = .01, .05, .10, .15, .20). By

0 having the sample size run from 3 to 50, it is possible

to obtain a power study that covers both large and small

samples. It is also observed that as the sample size

gets larger, the critical values look as if they are

approaching some limit. The variation in the critical

values becomes less as the sample size increases.

The use of the tables follows the standard hypo-

thesis testing procedure when using the rejection or

critical value tables. The steps involved in the use of

these tables are outlined below:

1. Sample data are collected (for these tables,

any sample size from 3 to 50 will do).

2. Double the sample size by employing the

reflection technique as described in Chapter II. If a
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standard, non-reflected test is being used, this step is

eliminated and the tables that were generated without the

reflection technique are referenced.

3. Calculate the desired statistic (K-S, A-D,

CVM) as described in Chapter II.

4. Enter the rejection table of the desired sta-

tistic at the appropriate level of significance.

5. Compare the table value with the calculated

statistic found in step 3.

6. If the calculated statistic is greater than or

equal to the table value, reject the null hypothesis (H0 )
J0

that the sample data comes from a uniform distribution.

* Power Study

As mentioned earlier, the power of a test is the

probability that the null hypothesis will be rejected when

the alternate hypothesis is true. The power study was

accomplished with symmetric distributions only. Based on

the studies done by others (Refs 15; 19) as well as two

trials done by this author, the decision was made to

eliminate non-symmetrical distributions. In all asymmetric

cases, it was found that there was a decrease in power

rather than an increase when the reflection procedure was

applied.

It is observed from the power tables for MLE's

that when the sample sizes are small, the reflection tech-

nique is generally not helpful in increasing the power.
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When the sample size is increased to around 30, the reflec-

tion technique causes an increase in power. This is true

with all distributions considered here with the exception

of the Cauchy distribution. At all sample sizes, the

reflection technique yields lower power values than the

standard non-reflected technique. The distributions that

show the best improvement in power with the reflection

technique are the normal and the triangular distributions.

The double exponential distribution generally is more

sketchy. The power with this distribution is better at

high sample sizes (n = 30 - 50) and at higher percentage

significance levels (a = .01, .05, and .10).

The power tables for the BLUE's show that higher

powers can be obtained at all values of n when the reflec-

tion technique is applied in the normal and triangular

cases. Those tables involving the Cauchy and double expon-

Uential distributions have similar results as the ones

* calculated with the MLE's.

Reading the power tables is basically self-

explanatory. The power values corresponding to the single

asterisk are for the standard non-reflected test. Those

*. corresponding to the double asterisks are for the reflected

* tests.

MLE vs BLUE Comparison

The first major observation is concerned with the

A-D statistic using the MLE's. The reader will observe
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that the power values when using MLE's behav quite

strangely for the various distributions. This is not only

with respect to the reflection-nonreflection comparison,

but also with respect to the sample sizes. Consider the

A-D power table for the triangular distribution. There

is a dramatic increase in the power by applying the reflec-

tion technique and, although such an increase is possible,

it would not be expected to be so great. When the power of

the reflected technique for n = 10 is compared to that for

n = 20, it is seen that the power decreases. Not only is

this not expected, but it is also not logical. The reason

behind these problems appears to be in the calculation of

the A-D statistic. This statistic uses the natural log

of the CDF in its calculation. When the MLE is used for

estimating the parameters, finding the natural log of zero

is a result. When the reflection technique is used, the

finding of the natural log of zero occurs twice. Since the

in of zero is undefined, the computer programs for this sta-

tistic had to be altered so that whenever the natural log

of zero came up, it was replaced by another number that was

close to zero and that was arbitrarily set. This setting

of an arbitrary number close to zero appears to cause the

inconsistent results in the A-D power tables. When this

first occurred, it was decided that a new method for esti-

mating the parameters was needed. Thus, the BLUE technique

as described in Chapter II is used. The results, as shown
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i -: in Appendices D-F for the BLUE, give much better and con-

sistent results.

Another result of using the BLUE's is that the

powers are in general increased over those for the MLE's.

The exceptions again are the Cauchy distribution and some

of the lower sample sizes. This means that generally,

when the BLUE's are used, the null hypothesis is rejected

when the alternate hypothesis is true more often than when

the MLE's are used. In other words, by using the BLUE's

the possibility of Type II errors is less than if MLE's

are used.

Sample Size

For the various K-S runs that were made with the

sample sizes set at 50, 100, 200, 500, 1000 and 5000, the

only one that gave consist(,Lt results at all alpha levels

was 5000. It was observed that at 1000, consistent results

were obtained for some of the significant levels but not

for all. It wasn't until 5000 was tested that consistent

results at all alpha levels are obtained. This is not to

say that 5000 is the optimum number. Higher numbers could

not be tested because of resource constraints ar. numbers

between 1000 and 5000 were not tested because of the time

constraint.
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V. Conclusions and Recommendations

One of the principal objectives of this thesis is

to verify an increase in the power of a goodness of fit

test when a reflection technique is used. The concept of

reflecting data about the sample mean comes from

E. F. Schuster, who predicted that the use of this tech-

nique can be helpful when testing with symmetrical dis-

tributions (Ref 19). Schuster also stated that the sta-

tistic that is modified with this reflection technique

would generally be better than the same statistic without

*the reflection technique (Ref 18). These assertions are

being tested in this thesi' for the uniform distribution

using the three test statistics as outlined in Chapter II.

Conclusions

If an analyst can assume the data come from a

symmetric distribution, the procedures of this thesis can

be useful. The data can be put into a goodness of fit

test as outlined in Chapter II. The procedures of Chapter

III can be applied to test the hypothesis that the data

correspond to a uniform distribution. If the test is

accomplished and the null hypothesis is accepted, then the

power study can be referenced.

From observation of the power tables it can be

seen that the powers calculated for the given symmetric
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distributions versus the uniform distribution are generally

better (more powerful) for the statistics employing the

reflection procedure. The exceptions being those pertain-

2. ing to the Cauchy distribution and a few of the lower

sample sizes. The problem with the Cauchy distribution

is not deemed very serious because of the very high power

exhibited for both the standard, non-reflected procedure

and the reflected procedure. Again, there is the problem

of relatively low power shown for the smaller sample sizes.

It is also concluded that when you have the uni-

form versus non-symmetrical test, the reflection pro-

cedure is not helpful. In fact, it was found to yield

lower powers when it was used with non-symmetrical dis-

tributions. This was predicted by Schuster (Ref 18), veri-

fied by Ream (Ref 15), and further substantiated by this

author in trials run with the exponential and lognormal

distributions.

Another important conclusion that is drawn from

this research is that when testing the uniform distribution

with unknown parameters, the best method of estimating

those parameters is by using BLUE's. The reasons for this

are: (1) they yield higher power values than the MLE's

in all cases, (2) the problem of taking the natural log of

zero in the A-D statistic is avoided, (3) the results of

the power study for all three test statistics are more

realistic and more useful, and (4) even with small sample

sizes, the reflection technique when used with BLUE's
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increased the power for the normal and the triangular dis-

tributions in all three test statistics and it increased

the power for all sample sizes for the double exponential

distribution in the A-D test.

Although using BLUE's increases power, there still

exists relatively low power values when n is small. For

these goodness of fit tests, sample sizes greater than 20

are recommended. However, if this is not possible, it

should still be remembered that the reflection technique

still improves the power for small sample sizes.

Table 6 is used as a summary to list the statis-

tics with the highest power at each of the alpha levels

and sample sizes. For the reasons just noted, the table

only includes those statistics calculated with the BLUE's.

This table may be compared (Ref 15:64). The letters R and

S in the parentheses signify whether the statistic is

standard or reflected. As seen here, the predominately

most powerful test is the A-D test. It is also observed

that the powers for the CVM test are quite similar to the

K-S test (Appendices D and F).

Recommendations

The critical values were generated for sample sizes

running from 3 to 50. When the sample sizes got large

(i.e., 40 to 50) the critical values seemed to be con-

verging to some number. With larger sample sizes, further
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Table 6

Highest Powered Statistics when Uniform Critical
Values are Tested Using Four Symmetrical

Alternative Distributions

Distribution Significance Level
Tested n at=.0l .05 .10 .15 .20

Norma-, 10 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

20 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

30 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

40 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

50 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

Cauchy 10 K-S(S) K-S(S) K-S(S) K-S(S) K-S(S)

20 K-S(S) K-S(S) A-D(S) A-D(S) A-D(S)

30 K-S(S) CVM(S) A-D(S) A-D(S) A-D(S)

40 A-D(S) A-D(S) A-D(S) A-D(S) A-D(S)

50 K-S(S) A-D(S) A-D(S) A-D(S) A-D(S)

Double 10 K-S(S) CVM(S) A-D(R) A-D(R) A-D(R)
Exponential 20 K-S(S) A-D(R) A-D(R) A-D(R) A-D(R)

30 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)

40 A-D(R) A-D(R) A-D(R) A-D(R) A-D(S)

50 K-S(R) A-D(R) A-D(S) A-D(S) A-D(S)

Triangular 10 CVM(R) K-S(R) K-S(R) K-S(R) K-S(R)

20 CVM(R) CVM(R) CVM(R) CVM(R) CVM(R)

30 CVM(R) K-S(R) K-S(R) K-S(R) K-S(R)

40 K-S(R) IC-S(R) K-S(R) K-S(R) K-S(R)

50 K-S(R) K-S(R) CVM(R) CVM(R) CVM(R)
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study might show a greater trend toward convergence, not

only in critical values but also in the power values.

This thesis only looks at four distributions in

the power study. Other distributions would make this

study more comprehensive.

Another suggestion is that other kinds of test

statistics could be used in a study of this nature. The

K-S, A-D, and CVM test statistics are popular but it is

possible that different tests might yield better results.

Finally, the method for estimating parameters

obviously has an effect on the critical values and on the

power values that are generated. Different methods of

estimating parameters should be investigated to see if

better, more accurate results can be obtained.
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Appendix A

Critical Value Tables of the K-S and

the Modified K-S Statistics for

the Uniform Distribution

Using MLE and BLUE
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Critical Values for the K-S Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level

n .01 .05 .10 .15 .20

3 .66198 .64207 .61770 .59230 .56678

4 .67323 .58734 .52329 .49275 .48086

5 .62659 .53992 .50039 .46618 .43299

6 .58798 .50672 .45993 .43275 .41055

7 .55672 .47179 .42564 .40016 .38099

8 .52278 .44479 .40267 .37614 .35586

9 .49236 .41846 .38199 .35571 .33643

10 .47285 .40103 .36459 .34019 .32029

11 .44566 .38335 .34516 .32203 .30598

12 .43256 .36957 .33327 .31126 .29447

13 .42541 .35536 .32374 .39951 .28286

14 .40528 .34235 .30999 .28870 .27406

15 .39923 .33287 .29904 .27788 .26303

16 .38512 .32221 .29005 .27112 .25526

17 .37882 .31471 .28329 .26357 .24845

18 .36545 .30419 .27781 .25854 .24222

19 .35860 .29842 .26779 .24978 .23597

20 .34227 .28956 .26153 .24248 .22998

21 .33769 .28400 .25563 .23895 .22492

22 .32620 .27828 .25134 .23333 .21877

23 .32899 .27277 .24639 .22802 .21503

24 .31895 .26735 .24120 .22388 .21016

25 .31042 .26216 .23539 .21919 .20706
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Alpha Level

n .01 .05 .10 .15 .20

26 .30567 .25691 .23181 .21522 .20307

27 .29538 .24988 .22637 .21143 .19912

28 .29496 .24780 .22277 .20728 .19579

29 .28976 .24155 .21811 .20313 .19233

30 .28372 .23908 .21603 .20059 .18897

31 .28144 .23671 .21075 .19714 .18657

32 .27610 .23148 .20921 .19390 .18264

33 .26971 .22860 .20528 .19156 .18045

34 .27020 .22553 .20282 .18815 .17767

35 .26536 .22080 .19863 .18562 .17498

36 .25893 .21829 .19609 .18310 .17312

37 .25678 .21476 .19413 .18111 .17115

38 .25881 .21351 .19239 .17844 .16673

39 .24814 .21040 .18911 .17713 .16720

40 .25216 .20653 .18647 .17408 .16460

41 .24952 .20533 .18443 .17158 .16317

42 .24475 .20350 .18386 .17035 .16092

43 .24232 .20007 .18013 .16856 .15941

44 .23889 .19836 .17910 .16767 .15743

45 .28313 .19624 .17772 .16562 .15542

46 .23639 .19464 .17642 .16344 .15458

47 .23489 .19406 .17500 .16113 .15184

48 .23145 .19166 .17255 .16005 .15071

49 .23005 .18977 .16952 .15848 .14908

50 .22761 .18685 .16840 .15653 .14791
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Critical Values of the Modified K.-S Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level

n .01 .05 .10 .15 .20

3 .49531 .47534 .45103 .42564 .40012

4 .45242 .38895 .36561 .35382 .33965

5 .40372 .35271 .31874 .29777 .28848

6 .36390 .31242 .28630 .26705 .25242

7 .32804 .28253 .26056 .24581 .23270

8 .30415 .26302 .24185 .22732 .21468

9 .29025 .24531 .22376 .20875 .19861

10 .26920 .23012 .21126 .19664 .18613

11 .26135 .21796 .19929 .18496 .17583

*12 .24405 .20849 .18811 .17627 .16778

13 .23608 .19944 .18056 .16821 .15978

14 .22521 .19069 .17252 .16167 .15303

15 .21650 .18301 .16684 .15535 .14757

16 .20921 .17807 .16173 .14949 .14060

17 .20447 .17356 .15671 .14485 .13688

18 .19839 .16805 .15146 .14101 .13217

19 .19336 .16189 .14654 .13629 .12807

20 .19024 .15876 .14286 .13305 .12476

21 .18656 .15561 .13960 .12964 .12200

22 .18353 .15064 .13582 .12613 .11868

*23 .17657 .14826 .13246 .12319 .11650

24 .17281 .14394 .13020 .12032 .11385

25 .17015 .14157 .12668 .11740 .11048
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Alpha Level

n .01 .05 .10 .15 .20

26 .16664 .13674 .12419 .11465 .10829

27 .16403 .13398 .12093 .11250 .10609

28 .16026 .13176 .11813 .11010 .10428

29 .15495 .12970 .11654 .10793 .10181

30 .15168 .12754 .11368 .10582 .10030

31 .14904 .12601 .11151 .10396 .09866

32 .14700 .12204 .11010 .10239 .09689

33 .14551 .12087 .10840 .10056 .09475

34 .14141 .11811 .10685 .09932 .09381

35 .14116 .11632 .10443 .09805 .09290

36 .13868 .11506 .10355 .09625 .09092

37 .13550 .11408 .10241 .09500 .08945

38 .13429 .11245 .10114 .09383 .08854

39 .13016 .11052 .09952 .09280 .08721

40 .13097 .10868 .09814 .09131 .08606

41 .12933 .10762 .09664 .09003 .08547

42 .12809 .10681 .09542 .08907 .08399

43 .12503 .10507 .09413 .08802 .08309

44 .12345 .10378 .09378 .08717 .08252

45 ,12158 .10194 .09282 .08654 .08151

46 .11961 .10102 .09149 .08591 .08056

47 .11773 .10020 .09031 .08429 .07952

48 .11597 .09938 .09005 .08301 .07824

49 .11534 .09850 .08865 .08248 .07788

50 .11532 .09694 .08766 .08167 .07665
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Critical Values of the K-S Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 .86106 .69514 .60714 .55916 .51511

4 .73306 .59316 .52387 .47848 .45032

5 .65611 .52602 .47447 .44043 .41224

6 .59306 .49034 .44172 .40803 .38542

7 .53639 .45571 .40920 .37982 .35796

8 .51349 .42715 .38782 .35968 .33975

9 .48402 .40728 .36715 .34093 .32070

10 .46161 .38943 .35169 .32728 .30901

11 .43877 .37448 .33668 .31354 .29488

12 .43569 .35679 .32500 .30245 .28515

13 .41817 .34868 .31462 .29070 .27423

14 .40081 .33724 .30399 .28146 .26467

15 .39396 .32836 .29498 .27341 .25796

16 .38076 .31807 .28667 .26521 .24889

17 .37120 .31990 .27826 .25852 .24260

18 .35843 .30206 .27042 .25248 .23704

19 .35494 .29378 .26367 .24406 .22976

20 .34693 .28648 .25713 .23863 .22487

21 .33606 .27963 .25306 .23433 .22090

22 .33047 .27547 .24667 .22906 .21624

23 .32159 .26980 .24180 .22556 .21128

24 .31702 .26442 .23720 .21973 .20739

25 .30795 .25926 .23259 .21654 .20341
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Alpha Level

n .01 .05 .10 .15 .20

26 .30104 .25487 .22870 .21253 .19977

27 .29564 .24881 .22370 .20725 .19561

28 .29081 .24570 .21979 .20405 .19243

29 .28530 .23932 .21533 .20094 .18918

30 .28296 .23672 .21256 .19775 .18618

31 .27958 .23277 .20925 .19358 .18241

32 .27784 .22721 .20579 .19134 .18050

33 .26856 .22443 .20220 .18866 .17810

34 .26916 .22031 .19881 .18615 .17524

35 .26687 .21860 .19531 .18288 .17289

36 .26239 .21485 .19482 .18087 .17083

37 .25515 .21401 .19188 .17885 .16843

38 .25540 .20970 .18927 .17597 .16530

39 .25178 .20924 .18754 .17477 .16463

40 .25252 .20598 .18415 .17205 .16231

41 .24826 .20299 .18290 .17035 .16024

42 .24294 .20145 .18164 .16861 .15913

43 .23978 .19774 .17957 .16754 .15761

44 .24039 .19602 .17714 .16530 .15608

45 .23871 .19461 .17658 .16378 .15427

46 .23365 .19320 .17432 .16166 .15307

47 .23150 .19256 .17302 .16025 .15166

48 .22967 .18979 .17132 .15925 .14943

49 .22722 .18820 .16885 .15728 .14828

50 .22632 .18750 .16717 .15520 .14651
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S!Critical Values of the Modified K-S Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 .88567 .74028 .64306 .57185 .50714

4 .76213 .60100 .50104 .43645 .39416

5 .65609 .49915 .41443 .36382 .33097

6 .58463 .43174 .35420 .31305 .28500

7 .49615 .36652 .31305 .28006 .25849

8 .46044 .33578 .28397 .25592 .23746

9 .42059 .30786 .26139 .23513 .21759

10 .38953 .28485 .24232 .21932 .20465

11 .36212 .26851 .22870 .20788 .19305

12 .33282 .24844 .21493 .19677 .18352

* 13 .31572 .23551 .20474 .18753 .17620

14 .29847 .22520 .19455 .18019 .16905

15 .28663 .21458 .18845 .17248 .16237

16 .26868 .20679 .18192 .16696 .15641

17 .25791 .19795 .17415 .16143 .15093

18 .24837 .19232 .16910 .15599 .14637

19 .24302 .18378 .16427 .15162 .14164

20 .23388 .18079 .15880 .14737 .13756

21 .22727 .17388 .15553 .14253 .13402

22 .21342 .16986 .15148 .13895 .13070

23 .20808 .16672 .14694 .13621 .12702

24 .20128 .16243 .14442 .13287 .12465

25 .19277 .15692 .14016 .12998 .12192
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Alpha Level

n .01 .05 .10 .15 .20

26 .18677 .15521 .13756 .12687 .11929

27 .18467 .15054 .13427 .12425 .11631

28 .17871 .14686 .13155 .12215 .11394

29 .17586 .14401 .12899 .11910 .11198

30 .17282 .14137 .12080 .11640 .10888

31 .16927 .13841 .12334 .11404 .10728

32 .16768 .13466 .12152 .11224 .10522

33 .16227 .13255 .11934 .11032 .10338

34 .15875 .13049 .11648 .10786 .10184

35 .15619 .12876 .11442 .10580 .10015

36 .15434 .12649 .11240 .10458 .09836

37 .15187 .12430 .11136 .10315 .09691

38 .14888 .12330 .10941 .10087 .09526

39 .14652 .12001 .10756 .10002 .09432

40 .14376 .11796 .10608 .09860 .09279

41 .14229 .11699 .10442 .09711 .09192

42 .14111 .11427 .10392 .09629 .09095

43 .13869 .11345 .10176 .09511 .08974

44 .13471 .11192 .10124 .09406 .08936

45 .13426 .11072 .10022 .09330 .08811

46 .13105 .10887 .09856 .09200 .08690

47 .13106 .10809 .09735 .09075 .08547

48 .13067 .10653 .09647 .09000 .08499

49 .12747 .10502 .09533 .08899 .08398

50 .12634 .10424 .09378 .08823 .08306
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Appendix B

Critical Value Tables of the A-D and

the Modified A-D Statistics for

the Uniform Distribution

Using MLE and BLUE
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Critical Values of the A-D Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level

n .01 .05 .10 .15 .20

3 8.5430 6.8575 6.1926 5.8164 5.5543

4 7.3371 5.9839 5.3106 4.9321 4.6697

* 5 6.7747 5.4023 4.7127 4.3516 4.1077

6 6.4976 5.0555 4.3512 3.9769 3.6940

7 6.3342 4.6829 4.0782 3.6625 3.3995

8 5.9315 4.4861 3.8213 3.4633 3.1877

9 5.8105 4.2479 3.6272 3.2670 2.9618

10 5.4777 4.0536 3.4461 3.0885 2.8339

11 5.4312 3.9635 3.3077 2.9686 2.7081

12 5.3987 3.8083 3.1962 2.8489 2.6086

13 5.0864 3.6940 3.0863 2.7510 2.5081

14 5.0313 3.5643 2.9947 2.6847 2.4419

15 4.9199 3.5396 2.9218 2.6047 2.3965

16 4.7975 3.4307 2.9194 2.5416 2.3284

17 4.8121 3.3791 2.8330 2.5120 2.2694

18 4.7954 3.3365 2.7766 2.4394 2.2151

19 4.7898 3.3145 2.7593 2.4230 2.1723

20 4.6567 3.3176 2.7100 2.3769 2.1474

21 4.6083 3.2885 2.6921 2.3337 2.1145

22 4.7088 3.2728 2.6516 2.3420 2.1003

23 4.5390 3.1896 2.6090 2.2989 2.0667

24 4.6133 3.1937 2.6080 2.2717 2.0302

25 4.7042 3.1460 2.5699 2.2595 2.0120
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Alpha Level

n .01 .05 .10 .15 .20

26 4.6984 3.1278 2.5302 2.2170 2.0087

27 4.6868 3.0703 2.4995 2.1932 1.9733

28 4.5401 3.1191 2.4940 2.1822 1.9718

29 4.5623 3.1621 2.5209 2.1610 1.9443

30 4.4439 3.1426 2.4847 2.1661 1.9313

31 4.5562 3.1220 2.4776 2.1471 1.9149

32 4.4859 3.1195 2.4544 2.0941 1.8862

33 4.3650 3.1059 2.4213 2.0896 1.8777

34 4.4479 3.1077 2.4065 2.0800 1.8633

35 4.4850 3.0542 2.3930 2.0698 1.8483

36 4.4410 3.0412 2.3966 2.0715 1.8500

U 37 4.3768 3.0179 2.3869 2.0399 1.8364

38 4.4533 2.9906 2.3757 2.0301 1.8192

39 4.3380 2.9291 2.3710 2.0327 1.8136

40 4.3356 2.9091 2.3418 2.0405 1.7952

41 4.4206 2.9588 2.3477 2.0206 1.8057

42 4.4293 2.9192 2.3492 2.0156 1.7840

43 4.3216 2.9382 2.3396 2.0156 1.7872

44 4.3807 2.9260 2.3439 2.0231 1.7824

45 4.2964 2.9076 2.3170 1.9909 1.7615

46 4.1999 2.9260 2.2975 1.9805 1.7543

47 4.2008 2.8801 2.2995 1.9535 1.7316

48 4.1678 2.8872 2.2938 1.9300 1.7142

49 4.2483 2.9150 2.2814 1.9542 1.7090

50 4.2651 2.9342 2.2655 1.9233 1.6985
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Critical Values of the Modified A-D Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level
n:.1 0 .10 .15 .20

3 15.2881 12.4927 11.4018 10.7923 10.3737

4 12.5984 10.3501 9.3703 8.7049 8.2847

5 11.2623 8.9382 7.9543 7.3735 6.9650

6 10.1240 7.9956 7.0615 6.5221 6.0718

*7 9.2640 7.2442 6.3278 5.7950 5.4060

8 8.6801 6.6350 5.7610 5.2429 4.8678

9 8.1384 6.2608 5.2822 4.7667 4.4250

10 7.5136 5.7656 4.9630 4.4563 4.1126

11 7.2203 5.4520 4.6080 4.1273 3.8305

12 6.9082 5.1481 4.4325 3.9092 3.5933

13 6.5438 4.9596 4.1424 3.7182 3.4040

14 6.3794 4.7180 3.9544 3.5138 3.2083

15 6.1046 4.5048 3.8087 3.3921 3.0929

16 5.9580 4.3950 3.6764 3.2602 2.9721

17 5.6821 4.2264 3.5609 3.1161 2.8364

18 5.6183 4.1225 3.4299 3.0152 3.7303

19 5.4793 3.9808 3.3348 2.9258 2.6433

20 5.4005 3.8053 3.2527 2.8426 2.5890

21 5.3547 3.8092 3.1523 2.7719 2.5012

22 5.1882 3.7652 3.0863 2.6856 2.4273

23 4.9936 3.6455 2.9775 2.6205 2.3464

24 4.9257 3.5900 2.8900 2.5360 2.2802

725 4.9180 3.4951 2.8335 2.4513 2.2085
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Alpha Level

n .01 .05 .10 .15 .20

26 4.8047 3.4007 2.8030 2.4074 2.1809

27 4.7765 3.3780 2.7570 2.3605 2.1201

28 4.7260 3.3259 2.7161 2.3269 2.0762

29 4.8720 3.2853 2.6565 2.2892 2.0518

30 4.6733 3.2044 2.6130 2.2497 2.0100

31 4.5721 3.1208 2.5566 2.2304 1.9804

32 4.4969 3.0899 2.5020 2.2132 1.9637

33 4.3720 3.0367 2.4831 2.1642 1.9415

34 4.3580 3.0479 2.4485 2.1355 1.9111

35 4.3458 2.9677 2.4354 2.0977 1.8728

36 4.2555 2.9574 2.4277 2.0686 1.8310

S37 4.2840 2.9126 2.3701 2.0353 1.8158

38 4.1940 2.8585 2.3303 2.0082 1.79'41

39 4.1662 2.8304 2.3069 1.9945 1.7607

40 4.1364 2.8084 2.2791 1.9623 1.7461

41 4.1145 2.7777 2.2468 1.9218 1.7124

42 4.0160 2.7458 2.2397 1.8981 1.6884

43 3.9760 2.7316 2.2002 1.8781 1.6701

44 3.9077 2.7199 2.1824 1.8435 1.6544

45 4.0014 2.6860 2.1378 1.8350 1.6275

46 3.9650 2.7080 2.1346 1.8285 1.6129

47 3.9581 2.6737 2.1486 1.8238 1.5977

48 3.8034 2.6551 2.1592 1.8151 1.5856

49 3.8431 2.6318 2.1201 1.7963 1.5733

50 3.8210 2.6305 2.1136 1.7793 1.5717
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Critical Values of the A-D Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 4.0687 2.1752 1.5797 1.2654 1.0706

4 3.5021 1.9785 1.5001 1.2119 1.0381

5 3.2911 1.9424 1.4847 1.2197 1.0463

6 3.2897 2.0165 1.5290 1.2509 1.0732

7 3.1820 2.0698 1.5651 1.2834 1.0968

8 3.1401 2.0678 1.5860 1.2945 1.1170

9 3.2273 2.1136 1.5716 1.3302 1.1394

10 3.3750 2.0454 1.6290 1.3351 1.1169

11 3.2613 2.0685 1.6135 1.3208 1.1458

12 3.3956 2.1000 1.5827 1.3194 1.1490

13 3.2260 2.1117 1.6095 1.3314 1.1568

14 3.3943 2.0702 1.6044 1.3450 1.1697

15 3.3791 2.1355 1.6430 1.3936 1.2063

16 3.2946 2.1422 1.6544 1.3765 1.2026

17 3.4620 2.1653 1.6581 1.3939 1.2022

18 3.4753 2.1974 1.6747 1.4270 1.2361

19 3.4847 2.1689 1.7140 1.4250 1.2373

20 3.5162 2.2121 1.7102 1.4468 1.2416

21 3.5236 2.2255 1.7265 1.4578 1.2621

22 3.5284 2.2822 1.7523 1.4524 1.2562

23 3.6108 2.2454 1.7499 1.4560 1.2539

24 3.6389 2.2629 1.7541 1.4575 1.2488

25 3.7464 2.2457 1.7720 1.4645 1.2485
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Alpha Level

n .01 .05 .10 .15 .20

26 3.7679 2.3248 1.7571 1.4530 1.2574

27 3.6860 2.2894 1.7501 1.4697 1.2571

28 3.6012 2.3021 1.8009 1.4681 1.2699

29 3.7083 2.3761 1.7833 1.4761 1.2787

30 3.6288 2.3793 1.7857 1.4925 1.2899

31 3.5850 2.3545 1.7927 1.5049 1.2977

32 3.6640 2.3670 1.8281 1.4938 1.2883

33 3.5810 2.3785 1.7985 1.5042 1.2993

34 3.5743 2.3601 1.8271 1.4988 1.3103

35 3.5450 2.3409 1.8240 1.4887 1.2885

36 3.5388 2.3803 1.8238 1.4969 1.3048

37 3.6298 2.3693 1.7996 1.5137 1.3129

38 3.6124 2.3359 1.8097 1.5296 1.3117

39 3.6117 2.3170 1.8054 1.5191 1.3103

40 3.6181 2.3603 1.8070 1.5081 1.3085

41 3.6757 2.3811 1.8 417 1.5059 1.3017

42 3.6711 2.3664 1.8238 1.5143 1.2978

43 3.6959 2.3450 1.8149 1.5467 1.3191

44 3.6292 2.3466 1.8478 1.5420 1.3099

45 3.5880 2.3564 1.8477 1.5153 1.3067

46 3.5493 2.3404 1.8260 1.5317 1.3119

47 3.5818 2.3101 1.8284 1.5125 1.3061

48 3.6322 2.3692 1.8183 1.5154 1.3078

49 3.5813 2.3799 1.8252 1.5121 1.2994

50 3.7611 2.4270 1.8253 1.4877 1.3074
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Critical Values of the Modified A-D Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 9.5697 5.0756 3.6269 2.8201 2.2507

4 7.2814 4.1593 2.8658 2.2744 1.8814

5 6.6664 3.5181 2.5608 2.0120 1.6730

6 6.1571 3.2152 2.2695 1.8618 1.5736

7 5.4943 2.9150 2.1570 1.7610 1.5160

8 4.9806 2.7991 2.0625 1.6977 1.4208

9 4.8035 2.7131 1.9993 1.6076 1.3714

10 4.6578 2.5677 1.8991 1.5367 1.3152

11 4.5058 2.4895 1.8383 1.4955 1.2744

12 4.2729 2.4339 1.8089 1.4762 1.2671

13 4.0504 2.3544 1.7305 1.4431 1.2367

14 3.9124 2.2909 1.7008 1.4075 1.2104

15 4.1464 2.2415 1.6854 1.4044 1.2000

16 3.8606 2.1830 1.6450 1.3865 1.1833

17 3.8206 2.1636 1.6350 1.3734 1.1751

18 3.6881 2.1528 1.6214 1.3522 1.1569

19 3.4686 2.0737 1.5728 1.3249 1.1379

20 3.3136 2.0164 1.6030 1.3128 1.1248

21 3.3501 2.0391 1.5621 1.3204 1.1390

22 3.3544 2.0544 1.5748 1.3144 1.1343

23 3.1554 2.0002 1.5605 1.3164 1.1179

24 3.2034 1.9998 1.5306 1.2834 1.1332

25 3.1224 1.9335 1.5249 1.2768 1.0961
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Alpha Level

n .01 .05 .10 .15 .20

26 3.1140 1.9839 1.5271 1.2603 1.0909

27 3.1299 1.9562 1.5046 1.2477 1.0806

28 3.0599 1.9576 1.5026 1.2440 1.0899

29 3.1557 1.9444 1.4974 1.2502 1.0690

30 3.0662 1.9201 1.4829 1.2370 1.0613

31 3.1405 1.9158 1.4728 1.2271 1.0683

32 2.9628 1.9145 1.4739 1.2350 1.0574

33 2.9090 1.8916 1.4658 1.2189 1.0567

34 2.9042 1.8942 1.4578 1.2029 1.0445

35 2.8856 1.8526 1.4512 1.1913 1.0517

36 2.8810 1.8560 1.4372 1.1939 1.0535

37 2.9157 1.8544 1.4308 1.1995 1.0465

38 2.8608 1.8423 1.4237 1.1814 1.0323

39 2.9815 1.8581 1.4152 1.1818 1.0323

40 2.4265 1.8209 1.4117 1.1908 1.0297

41 2.8851 1.8248 1.3979 1.1734 1.0224

42 2.2970 1.8152 1.3884 1.1729 1.0202

43 2.8688 1.8209 1.3960 1.1564 1.0195

44 2.7832 1.7963 1.3916 1.1659 1.0148

45 2.9015 1.8068 1.3894 1.1681 1.0073

46 2.8440 1.8269 1.3772 1.1800 1.0228

47 2.8452 1.8049 1.3728 1.1689 1.0191

48 2.8465 1.7865 1.3796 1.1783 1.0181

* 49 2.8330 1.7662 1.3760 1.1655 1.0116

50 2.8362 1.7583 1.3893 1.1672 1.0004
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Appendix C

Critical Value Tables of the CVM and

the Modified CVM Statistics for

the Uniform Distribution

Using MLE and BLUE
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Critical Values of the CVM Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level

n .01 .05 .10 .15 .20

3 .32803 .30935 .28456 .26371 .24483

4 .47896 .36118 .29797 .25772 .23171

5 .55036 .37779 .31192 .26967 .23853

6 .57796 .39830 .31313 .26784 .23447

7 .59344 .39883 .31932 .27279 .23847

8 .60346 .40288 .32088 .27076 .23745

9 .60783 .41201 .32456 .26949 .23615

10 .62349 .40748 .31934 .26771 .23464

11 .66330 .42532 .32273 .27039 .23645

9 12 .65978 .42426 .33312 .27532 .24049

13 .65903 .42556 .32928 .27722 .24061

14 .67366 .44326 .34076 .27540 .23962

15 .68341 .43440 .33307 .27525 .23893

16 .69014 .43858 .33413 .27681 .23674

17 .68998 .43649 .33003 .27538 .23534

18 .69438 .43737 .33348 .28099 .23651

19 .69534 .43559 .33691 .27867 .23900

20 .68524 .43352 .33409 .27746 .24136

21 .68251 .43917 .33154 .27770 .23871

22 .68887 .43599 .32937 .27810 .23997

23 .68668 .44011 .33592 .27894 .23781

24 .68143 .43913 .33223 .28026 .24000

25 .69229 .43285 .33604 .27855 .23949
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Alpha Level

n .01 .05 .10 .15 .20

26 .72948 .43938 .33492 .27908 .23988

27 .71071 .44535 .33846 .28182 .23935

28 .70017 .43825 .33580 .28118 .23883

29 .70807 .44273 .33404 .27813 .23900

30 .72837 .45084 .34486 .28263 .23848

31 .72818 .46161 .34189 .28345 .24092

32 .72193 .45548 .34291 .28232 .24146

33 .71909 .45142 .34502 .28383 .24062

34 .70685 .46097 .34366 .28443 .24000

35 .72984 .46112 .34175 .28226 .24313

36 .71835 .45543 .33913 .28447 .23987

37 .68936 .45282 .34661 .28270 .24393

38 .69719 .45166 .34789 .28300 .24163

39 .69984 .45560 .34930 .28343 .24087

40 .70307 .45332 .34529 .28036 .23986

41 .71622 .45210 .34617 .27912 .24003

42 .72008 .45186 .34164 .28212 .24032

43 .71636 .45226 .34206 .27948 .24096

44 .70420 .45612 .34174 .28059 .24172

45 .70470 .45982 .34320 .28019 .23850
46 .69969 .45810 .34262 .28326 .24108

47 .72270 .45550 .34654 .28288 .24074

48 .70394 .46135 .33957 .27994 .24126

49 .72186 .46348 .34227 .28111 .24069

50 .72565 .45705 .34529 .28068 .24009
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Critical Values of the Modified CVM Statistic
for the Uniform Distribution

(Parameters Estimated with the MLE)

Alpha Level

. n .01 .05 .10 .15 .20

3 .49117 .46022 .41960 .38590 .35570

4 .55244 .44058 .37036 .32014 .29136

5 .55637 .41572 .34599 .29958 .26500

6 .54868 .39143 .32273 .27811 .24244

7 .53486 .37724 .30617 .26138 .22530

8 .52805 .36465 .28828 .24826 .21542

9 .51115 .34564 .27815 .23401 .20370

10 .49088 .34049 .26994 .22616 .19421

11 .47641 .33113 .26316 .22278 .19037

12 .48118 .32757 .25719 .21334 .18370

13 .46628 .31420 .25218 .21018 .17887

14 .47912 .32109 .24597 .20230 .17546

15 .46276 .31070 .24451 .19868 .16983

16 .47636 .29914 .23440 .19459 .16598

17 .46751 .30567 .23170 .18863 .16345

18 .46704 .30161 .22679 .18635 .15946

19 .45342 .29712 .22682 .18775 .15868

20 .44435 .29664 .22497 .18437 .15671

21 .44903 .28945 .22413 .18394 .15543

22 .45874 .28936 .21978 .18104 .15322

23 .44392 .28368 .21456 .17893 .15168

24 .44631 .28461 .21563 .17967 .15054

" - 25 .44185 .28298 .21240 .17524 .15076
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Alpha Level

n .01 .05 .10 .15 .20

26 .44630 .27870 .21381 .17374 .14850

27 .45579 .27304 .21243 .17422 .14781

28 .44546 .27632 .21271 .17113 .14567

29 .43870 .28373 .20751 .16979 .14392

30 .44351 .28059 .20628 .16822 .14521

31 .45389 .27878 .20339 .16981 .14202

32 .45091 .27491 .20707 .16950 .14085

33 .44784 .27614 .20666 .16791 .14247

34 .43878 .27602 .20355 .16756 .14164

35 .43934 .27162 .20283 .16630 .14275

36 .43306 .27509 .20238 .16908 .14248

37 .44050 .26934 .20360 .16655 .14098

38 .43904 .26866 .20308 .16641 .14019

39 .43230 .26734 .20630 .16478 .14012

40 .43495 .26488 .20249 .16366 .139'.2

41 .42764 .26510 .19916 .16431 .13901

42 .43187 .26489 .19958 .16216 .13949

43 .43568 .26646 .19621 .16249 .13765

44 .43090 .25990 .19782 .16301 .13603

45 .43374 .26522 .19797 .16184 .13557

46 .41933 .26458 .19373 .15931 .13846

47 .42206 .26786 .19578 .15679 .13117

48 .42903 .25937 .19396 .15655 .13218

. . 49 .43136 .25986 .19424 .15751 .13226

50 .43289 .25542 .19346 .15549 .13311
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Critical Values of the CVM Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 .68503 .41511 .28059 .22641 .18862

*4 .64853 .37250 .27087 .21406 .17883

5 .61375 .36763 .27051 .22166 .18801

6 .60358 .36301 .27285 .22034 .18790

7 .58137 .36976 .27705 .22627 .18962

8 .60108 .36494 .27605 .22891 .19547

9 .61956 .36766 .28475 .23192 .20070

10 .62161 .37833 .28473 .23596 .20179

11 .61677 .37958 .29136 .23844 .20343

12 .62449 .39518 .29702 .24406 .20580

13 .62914 .39686 .30456 .24511 .20946

14 .62653 .40960 .30567 .24467 .20936

15 .64220 .40336 .30364 .25140 .21747

16 .63219 .40996 .30427 .24971 .21286

17 .68133 .40684 .30566 .24898 .21306

18 .66835 .40883 .31359 .25503 .21390

19 .66224 .40823 .30621 .25269 .21424

20 .65898 .41420 .30799 .25340 .21517

21 .67188 .42137 .31343 .25491 .21766

22 .65862 .41752 .31928 .25904 .21909

23 .67544 .42093 .31494 .26275 .22580

24 .68575 .41512 .31372 .26347 .22229

25 .68389 .41690 .31703 .26220 .22285
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Alpha Level
n .01 .05 .10 .15 .20

26 .66182 .41131 .31876 .26547 .22543

27 .66791 .41875 .31995 .26351 .22778

28 .68322 .41434 .31911 .26600 .22464
29 .68293 .42232 .32272 .26198 .22236

30 .69932 .42401 .32577 .26312 .22435
31 .66620 .43345 .33113 .26482 .22641

32 .68664 .43814 .31951 .26644 .22784

33 .68450 .43905 .32267 .26-776 .22909

34 .69483 .43892 .32303 .26986 .22959

35 .70099 .44047 .32468 .26882 .22790

36 .70283 .43471 .32540 .26449 .22959

0 37 .70075 .42776 .32681 .27118 .22669

38 .67773 .43374 .33358 .26964 .22627

39 .69045 .43415 .33050 .26997 .22850

40 .70860 .43947 .32830 .26932 .22745

41 .70674 .43959 .33259 .26640 .22994

42 .71473 .44096 .32987 .27192 .23135

43 .70693 .43988 .33107 .27296 .23124

44 .69235 .44275 .33123 .27466 .23255

45 .70076 .43317 .33690 .27188 .23113

46 .69561 .43634 .33543 .27306 .23017

47 .69685 .43472 .33359 .27596 .23279

48 .72336 .44138 .33729 .27563 .23318

49 .68891 .44642 .33353 .27496 .23395

50 .69810 .43915 .33647 .27544 .23175
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Critical Values for the Modified CVM Statistic
for the Uniform Distribution

(Parameters Estimated with the BLUE)

Alpha Level

n .01 .05 .10 .15 .20

3 1.5086 1.0078 .69228 .52325 .39531

4 1.4099 .84207 .52675 .37882 .29366

5 1.3074 .67025 .43065 .32132 .25135

6 1.1814 .59698 .37628 .28016 .22771

7 1.1417 .52270 .34107 .26014 .21280

8 .99500 .48746 .31729 .24407 .20097

9 .86687 .43467 .30400 .23495 .19266

10 .84117 .41600 .29440 .22028 .18358

11 .76688 .40283 .27460 .21525 .17900

1.2 .70410 .38526 .26374 .21026 .17271

13 .68128 .36436 .25927 .20587 .17216

14 .64336 .34370 .25150 .20177 .16947

15 .62532 .32716 .24472 .19997 .16721

A. 16 .61438 .32030 .23423 .19182 .16121

17 .62443 .30801 .23024 .18787 .16022

18 .55980 .31141 .22697 .18431 .15677

19 .54652 .29882 .22392 .18589 .15963

20 .53625 .30450 .22335 .18559 .15581

21 .53381 .29449 .22119 .18243 .15685

22 .51465 .29149 .22152 .18112 .15381

23 .49979 .28909 .21815 .17849 .15228

24 .49585 .28208 .21684 .17729 .15218

25 .46569 .28093 .21699 .17740 .15251
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Alpha Level

n .01 .05 .10 .15 .20

26 .46242 .27536 .21540 .17426 .15017

27 .45544 .28044 .21262 .17682 .14900

28 .44810 .27694 .21438 .17458 .14644

29 .45688 .28091 .21597 .17447 .14577

30 .44197 .28652 .21232 .17088 .14500

31 .42396 .28282 .21086 .16972 .14406

32 .42356 .28002 .20/98 .17024 .14641

33 .44515 .28013 .20710 .17077 .14356

34 .44342 .27389 .20626 .17099 .14446

35 .43420 .27817 .21634 .16960 .14508

36 .42421 .27600 .20802 .16769 .14311

37 .43299 .27077 .20565 .16873 .14402

38 .41798 .27270 .20419 .16708 .142 6

33 .43174 .27334 .20425 .16675 .14376

40 .44416 .27364 .20219 .16904 .14319

41 .44020 .26606 .20162 .16610 .14332

42 .43486 .26088 .20166 .16623 .13973

43 .41844 .26073 .19944 .16598 .13872

44 .42421 .25876 .1.9560 .16271 .14060

45 .42712 .25861 .- 9769 .16237 .13884

46 .43222 .25871 .19388 .16245 .13693

47 .42739 .26418 -9735 .16120 .13691

48 .42876 .25596 .19924 .16030 .13758

49 .42666 .25943 .19255 .16035 .13609

50._ .43203 .25645 .19465 .15826 .13449
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Power Tables for the K-S Statistic
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Normal
Kolmogorov-Smirnov Statistic

Maximum Likelihood Estimators
Calculation Method

*- standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10 * .0176 .0712 .1310 .1820 .2328
10 ** .0034 .0170 .0378 .0678 .1014

20 * .0636 .1786 .2736 .3514 .4136
20 ** .0280 .0996 .1668 .2268 .2844

30 * .1482 .3216 .4448 .5268 .6010
30 ** .1720 .3478 .4692 .5408 .5928

40 * .2446 .4946 .6920 .7104 .7648

40 ** .3938 .6250 .7222 .7792 .8190

50 * .3534 .6390 .7564 .8236 .8656

50 ** .6340 .8052 .8666 .9020 .9292

Best Linear Unbiased Estimators
Calculation Method

*- standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .1300 .2560 .3494 .4244 .4764
10 ** .2338 .4158 .5292 .6082 .6604

20 * .2046 .4186 .5304 .6112 .6704
20 ** .3678 .5988 .7066 .7578 .7968

30 * .3552 .5418 .6534 .7338 .7892

30 ** .6144 .7836 .8834 .8978 .9284

40 * .4314 .6560 .7672 .8302 .8724

40 ** .7854 .9134 .9472 .9640 .9734

50 * .5126 .7200 .8300 .8874 .9214
50 ** .8816 .9542 .9792 .9846 .9896
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Cauchy
Kolmogorov-Smirnov Statistic

Maximum Likelihood Estimators
Calculation Method

.- standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

1 10 * .4878 .6066 .6722 .7172 .7552
10* .2746 .3660 .4196 .4608 .5044

20 * .8446 .9144 .9434 .9614 .9682
20 ** .6184 .7490 .8876 .8424 .8764

30 * .9592 .9852 .9930 .9958 .9978
30 ** .8566 .9252 .9518 .9628 .9708

40 * .9920 .9988 .9992 .9998 1.0000
40 ** .9544 .9846 .9920 .9952 .9974

50 * .9992 1.0000 1.0000 1.0000 1.0000
50** .9866 .9952 .9980 .9994 .9996

Best Linear Unbiased Estimators
Calculation Method

"* standard Powers at Alpha Level

n **- reflected .01 .05 .10 .15 .20

10 * .4748 .6210 .6948 .7464 .7842

10 ** .0640 .2668 .4020 .4974 .5734

20 * .8400 .9246 .9532 .9696 .9780
20 ** .4914 .7298 .8224 .8670 .9026

30 * .9624 .9874 .9950 .9966 .9978
30 ** .8292 .9284 .9654 .9740 .9830

40 * .9924 .9986 .9994 .9998 .9998

40 ** .9532 .9874 .9954 .9980 .9983

50 * .9996 1.0000 1.0000 1.0000 1.0000

50 ** .9884 .9972 .9996 .9998 .9998

77



Powers for Testing Ho: Population is Uniform,
When Actual Population is Triangular

Kolmogorov-Smirnov Statistic

Maximum Likelihood Estimators
Calculation Method

• standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10 * .0104 .0420 .0876 .1342 .1804
10 ** .0034 .0172 .0346 .0634 .0966

20 * .0156 .0702 .1316 .1966 .2442

20 ** .0096 .0506 .1004 .1444 .1960

30 * .0260 .1074 .1900 .2728 .3504

30 ** .0656 .1864 .2966 .3682 .4286

40 * .0364 .1714 .2970 .3912 .4722

40 ** .1644 .3834 .5044 .5848 .6480

50 * .0554 .2292 .3954 .5044 .5884

50 **.3280 .5654 .6804 .7482 .7978

Best Linear Unbiased Estimators
Calculation Method

•- standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .0196 .1034 .2078 .3024 .3710
10 ** .1032 .3806 .5304 .6264 .6840

20 * .0436 .1990 .3450 .4674 .5630
20 ** .3230 .6312 .7544 .8120 .8570

30 * .0942 .3322 .5060 .6166 .7038
30 ** .6090 .8140 .9114 .9250 .9440

40 * .1336 .4502 .6504 .7446 .8150
40 ** .7860 .9228 .9612 .9724 .9820

50 * .2016 .5390 .7386 .8358 .8874
50 ** .8894 .9656 .9828 .9894 .9940
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Powers for Testing H0 : Population is Uniform,
When Actual Population is Double Exponential

Kolmogorov-Smirnov Statistic

Maximum Likelihood Estimators
Calculation Method

*.standard Powers at Alpha Level
n , - reflected .01 .05 .10 .15 .20

10 .0894 .2120 .2886 .3508 .4110
10 **.0068 .0326 .0622 .0984 .1332

20 *.3122 .4930 .6004 .6832 .7298
20 **.1308 .2844 .3820 .4532 .5162

30 *.5250 .7298 .8210 .8750 .9094
30 **.4588 .6316 .7174 .7648 .7972

40 *.7012 .8858 .9426 .9632 .9778
40 **.7124 .8422 .8898 .9148 .9312

50 *.8298 .9520 .9810 .9924 .9962
50 **.8694 .9312 .9562 .9726 .9806

Best Linear unbiased Estimators
Calculation Method

*- standard Powers at Alpha Level
n *- reflected .01 .05 .10 .15 .20

10 * .1464 .2928 .3998 .4724 .5294

10 ** .1288 .2476 .3728 .4690 .5348

20 * .3546 .5646 .6852 .7598 .8114

20 ** .2244 .5454 .6826 .7522 .8070

30 * .5628 .7644 .8574 .9058 .9396
30 ** .6178 .8078 .8966 .9124 .9330

40 * .7178 .9012 .9548 .9730 .9830
40 ** .8332 .9294 .9562 .9700 .9796

50 * .8402 .9574 .9840 .9922 .9956
50 ** .9296 .9748 .9872 .9912 .9946
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Appendix E

Power Tables for th~e A-D Statistic
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Normal

Anderson-Darling Statistic

Maximum Likelihood Estimators
Calculation Method

*- standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 .20

10 * .0140 .0500 .0898 .1280 .1626
10 ** .1610 .3574 .3638 .3714 .3828

20 * .0336 .1028 .1756 .2356 .2872
20 ** .0480 .1842 .2714 .3608 .3996

30 * .0662 .1828 .3322 .4358 .5200
30 ** .0804 .3186 .4602 .5636 .6412

40 * .1324 .3946 .5646 .6732 .7474
40 ** .2850 .5880 .7176 .7920 .8386

50 * .2674 .5836 .7610 .8392 .8892
50 ** .5584 .7890 .8772 .9228 .9446

Best Linear Unbiased Estimators
Calculation Method

.*- standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 .20

10 * .0932 .1660 .2128 .2750 .3536
10 ** .2602 .4940 .6118 .7274 .7938

20 * .2520 .3606 .4482 .5294 .6022
20 ** .5014 .7210 .8078 .8646 .8968

30 * .3076 .4500 .5906 .6770 .7472
30 ** .6598 .8488 .9176 .9480 .9624

40 * .3686 .5684 .7034 .7460 .8410
40 ** .8046 .9348 .9680 .9806 .9878

50 * .4340 .6686 .8052 .8780 .9156
50 ** .9034 .9790 .9916 .9956 .9984
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Cauchy

Anderson-Darling Statistic

Maximum Likelihood Estimators
Calculation Method

*- standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10 * .3686 .4822 .5422 .5890 .6308
10 ** .3252 .5050 .5234 .5434 .5678

20 * .6986 .8316 .8920 .9246 .9444
20 ** .4474 .6418 .7262 .7828 .8146

30 * .9224 .9764 .9920 .9942 .9960
30 ** .7004 .8648 .9194 .9460 .9592

40 * .9892 .9980 .9994 .9998 .9998

40 ** .8940 .9648 .9830 .9892 .9938

50 * .9984 .9996 1.0000 1.0000 1.0000

50 ** .9714 .9934 .9966 .9988 .9994

* Best Linear Unbiased Estimators
Calculation Method

*- standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .3570 .5380 .6218 .7014 .7728
10 ** .1790 .3568 .4752 .5866 .6660

20 * .7592 .9136 .9594 .9764 .9840
20 ** .5078 .7312 .8186 .8838 .9200

30 * .9566 .9892 .9960 .9980 .9986
30 ** .7966 .9324 .9716 .9836 .9906

40 * .9944 .9994 .9998 1.0000 1.0000
40 .9422 .9880 .9960 .9982 .9992

50 * .9994 1.0000 1.0000 1.0000 1.0000
50 ** .9856 .9986 .9992 .9998 1.0000
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Triangular

Anderson-Darling Statistic

Maximum Likelihood Estimators

Calculation Method
h.*- standard Powers at Alpha Level

n **- reflected .01 .05 .10 .15 .20

10 * .0046 .0248 .0504 .0784 .1084
10 ** .2506 .8602 .8644 .8686 .8720

20 * .0056 .0280 .0592 .0964 .1302
20 ** .0566 .3590 .6398 .8916 .8968

30 * .0046 .0302 .0790 .1292 .1942
30 ** .0554 .3686 .5930 .7808 .9046

40 * .0072 .0624 .1514 .2354 .3318
40 ** .1418 .4858 .6924 .8118 .8882

50 * .0130 .1048 .2652 .3952 .4984

50 ** .2896 .6154 .7908 .8836 .9310

Best Linear Unbiased Estimators
Calculation Method

•. standard Powers at Alpha Level
.n **- reflected .01 .05 .10 .15 .20

10 * .0024 .0220 .0534 .0906 .1404
10 ** .0416 .1912 .3112 .3972 .4634

20 * 0090 .0692 .1620 .2564 .3676
20 ** .2164 .4748 .5858 .6764 .7336

30 * .0234 .1428 .3556 .5094 .6242
30 ** .4136 .6878 .7946 .8486 .8896

40 * .0518 .3180 .5816 .7302 .8158
40 ** .6266 .8534 .9164 .9426 .9588

50 * .1036 .4942 .7670 .8798 .9254
50 ** .7912 .9350 .9666 .9802 .9880
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Powers for Testing HQ: Population is Uniform,
When Actual Population is Double Exponential

Anderson-Darling Statistic

Maximum Likelihood Estimators
Calculation Method

• - standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .0744 .1676 .2354 .2964 .3494
10 ** .1208 .4004 .4082 .4162 .4294

20 * .1840 .3558 .4932 .5864 .6638
20 ** .0770 .2572 .3996 .5298 .5824

30 * .3716 .6386 .7992 .8640 .9100
30 ** .3142 .5750 .7014 .7894 .8368

40 * .6376 .8860 .9534 .9754 .9862
40 ** .6400 .8156 .8754 .9082 .9328

50 * .8452 .9690 .9928 .9966 .9978
50 ** .8240 .9196 .9522 .9706 .9804

Best Linear Unbiased Estimators
Calculation Method

• - standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .0400 .1554 .2342 .3404 .4608
10 ** .1204 .2844 .4430 .6132 .7044

20 * .1908 .4318 .6206 .7234 .7994
20 ** .3058 .6574 .7710 .8430 .8822

30 * .4000 .7034 .8614 .9204 .9518
30 ** .6446 .8596 .9186 .9466 .9602

40 * .6556 .8968 .9614 .9814 .9918
40 ** .8380 .9452 .9712 .9824 .9898

50 * .8232 .9686 .9918 .9972 .9982
50 ** .9264 .9804 .9896 .9952 .9972
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Append ix F

Power Tables for the CVM Statistic
° .
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Normal

Cramer-Von Mises Statistic

Maximum Likelihood Estimators
Calculation Method

,- standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10 * .0208 .0818 .1410 .1966 .2396

10 ** .0026 .0148 .0332 .0552 .0820

20 * .0586 .1620 .2470 .3290 .3948

20 ** .0282 .0906 .1608 .2248 .2864

30 * .1012 .2738 .4148 .5144 .6046
30 ** .1684 .3604 .4946 .5704 .6244

40 * .1994 .4454 .6042 .7138 .7786

40 ** .4122 .6426 .7418 .8014 .8422

50 * .3086 .6110 .7656 .8474 .8924

50 ** .6406 .8354 .8910 .9236 .9396

Best Linear Unbiased Estimators
Calculation Method

• standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10"* .1606 .2964 .3878 .4538 .5110

10 ** .2266 .4034 .5034 .5918 .6444

20 * .2560 .4124 .5302 .6094 .6736

20 ** .3920 .6108 .7158 .7724 .8218

30 * .3256 .5292 .6390 .7254 .7830

30 ** .6338 .7954 .8730 .9122 .9344

40 * .4072 .6084 .7408 .8158 .8669

40 ** .7772 .9074 .9512 .9658 .9768

50 * .4778 .6970 .8108 .8764 .9254
50 ** .8796 .9660 .9826 .9902 .9932
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Cauchy

Cramer-Von Mises Statistic

Maximum Likelihood Estimators
Calculation Method

.- standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 .20

10 * .4532 .5690 .6372 .6892 .7236
10 ** .2448 .3192 .3786 .4210 .4662

20 * .7850 .8960 .9370 .9566 .9648
20 .5722 .6950 .7716 .8208 .8546

30 * .9486 .9852 .9950 .9972 .9976
30 ** .8210 .9130 .9524 .9652 .9732

40 * .9928 .9990 .9992 .9996 .9996

40 ** .9384 .9802 .9902 .9948 .9964

50 * .9986 .9998 .9998 .9998 1.0000

50 ** .9838 .9958 .9988 .9992 .9996

Best Linear Unbiased Estimators
Calculation Method

*- standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 .20

10 * .4010 .5660 .6632 .7220 .7684
10 ** .0920 .2710 .3738 .4772 .5474

20 * .8042 .9126 .9528 .9666 .9754
20 ** .5088 .7182 .8122 .8596 .8976

30 * .9546 .9902 .9958 .9972 .9978
30 ** .8374 .9240 .9636 .9784 .9876

40 * .9924 .9990 .9998 .9998 .9998
40 ** .9440 .9836 .9946 .9966 .9982

* 50 * .9992 .9996 .9998 1.0000 1.0000
50 ** .9856 .9976 .9994 .9998 .9998
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Cauchy

Cramer-Von Mises Statistic

Maximum Likelihood Estimators
Calculation Method

• - standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .4532 .5690 .6372 .6892 .7236
10 ** .2448 .3192 .3786 .4210 .4662

20 * .7850 .8960 .9370 .9566 .9648
20 ** .5722 .6950 .7716 .8208 .8546

30 * .9486 .9852 .9950 .9972 .9976
30 ** .8210 .9130 .9524 .9652 .9732

40 * .9928 .9990 .9992 .9996 .9996
40 ** .9384 .9802 .9902 .9948 .9964

. 50 * .9986 .9998 .9998 .9998 1.0000

50** .9838 .9958 .9988 .9992 .9996

Best Linear Unbiased Estimators
Calculation Method

*...* standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 .20

10 * .4010 .5660 .6632 .7220 .7684
10 ** .0920 .2710 .3738 .4772 .5474

20 * .8042 .9126 .9528 .9666 .9754
20 ** .5088 .7182 .8122 .8596 .8976

30 * .9546 .9902 .9958 .9972 .9978
30 ** .8374 .9240 .9636 .9784 .9876

40 * .9924 .9990 .9998 .9998 .9998
40 ** 9440 .9836 .9946 .9966 .9982

50 * .9992 .9996 .9998 1.0000 1.0000
50 ** .9856 .9976 .9994 .9998 .9998
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Powers for Testing Ho: Population is Uniform,
When Actual Population is Triangular

Cramer-Von Mises Statistic

Maximum Likelihood Estimators
Calculation Method

• - standard Powers at Alpha Level
n * reflected .01 .05 .10 .15 20

10 * .0102 .0532 .1006 .1454 .1880
10 ** .0022 .0146 .0312 .0532 .0798

20 * .0150 .0676 .1260 .1826 .2358
20 ** .0074 .0434 .0894 .1410 .1908

30 * .0176 .0834 .1676 .2552 .3398
30 ** .0570 .1880 .3098 .3970 .4558

40 * .028" .1302 .2530 .3716 .4724
40 ** .1684 .4016 .5310 .6110 .6716

50 * .034C .1800 .3590 .5048 .6090
50 ** .318S .6056 .7252 .7914 .8318

Best Linear Unbi-sed Estimators
Calculation Method

*..* standard Powers at Alpha Level

n * reflected .01 .05 .10 .15 .20

10 * .0256 .1156 .2214 .3148 .4044
10 ** .1264. .3776 .5096 .6174 .6838

20 * .0410 .1854 .3628 .4954 .6084
20 ** .3628 .6492 .7652 .8191 .8582

30 * .0546 .2900 .5032 .6642 .7636
30 ** .6278 .8138 .8872 .9230 .9418

40 * .0950 .4196 .6686 .7936 .8682
40 ** .7566 .9098 .9514 .9690 .9794

50 * .1742 .5680 .1802 .8752 .9360
50 ** .865-4. .9640 .9846 .9906 .9940
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Powers for Testing H Population is Uniform,
When Actual Population is Double Exponential

Cramer-Von Mises Statistic

Maximum Likelihood Estimators
Calculation Method

*- standard Powers at Alpha Level
n *- reflected .01 .05 .10 .15 .20

10 * .0930 .2110 .2884 .3546 .4052
10 ** .0074 .0294 .0562 .0938 .1346

20 * .2372 .4458 .5740 .6626 .7264
20 ** .1418 .2868 .3896 .4696 .5288

30 * .4232 .7006 .8288 .8934 .9282
30 ** .4638 .6472 .7390 .7908 .8206

40 * .6812 .8910 .9522 .9756 .9862
40 ** .7204 .8454 .8874 .9170 .9330

50 * .8440 .9730 .9900 .9960 .9976
50 ** .8502 .9278 .9540 .9674 .9740

W Best Linear Unbiased Estimators
Calculation Method

*- standard Powers at Alpha Level
n **- reflected .01 .05 .10 .15 .20

10 * .1424 .3004 .4058 .4904 .5538
10 ** .1188 .2476 .3526 .4638 .5368

20 * .3296 .5476 .6872 .7764 .8318
20 ** .2566 .5610 .6976 .7696 .8178

30 * .5040 .7814 .8738 .9254 .9500
30 ** .6390 .8142 .8844 .9204 .9376

40 * .7136 .9124 .9648 .9808 .9882
40 ** .8156 .9210 .9548 .9690 .9786

50 * .8690 .9760 .9910 .9948 .9974
50 ** .9076 .9664 .9820 .9894 .9930
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